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Abstract. For successful COTS component selection and integration,
composers increasingly look at software measurement techniques.
However, determining the complexity of a component’s adapter is still
an ongoing concern. Here, a suite of measures is presented to address
this problem within a COTS-based software measurement activity. Our
measures are based on a formally defined component-based model, aim-
ing at expressing and measuring some aspects of component adaptations.
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1 Introduction

The rigorous measurement of reuse will help developers determine current levels
of reuse and help provide insight into the problem of assessing software that is
easily reused. Some reuse measures are based on comparisons between length or
size of reused code and the size of newly written code of software components [12].
Particularly, measurement programs can facilitate incorporating an engineering
approach to component-based software development (CBSD), and specifically
to COTS component selection and integration, giving composers a competitive
advantage over those who use more traditional approaches.

Measurements let developers identify and quantify quality attributes in
such a way that risks encountered during COTS selection are reduced. Then,
measurement information might be structured as the proposal in [11], in which
a methodology facilitates the evaluation and improvement of reuse and expe-
rience repository systems by iteratively conducting goal-oriented measurement
programs. However, most cost estimates for CBS developments are based on
rules of thumb involving some size measure, like adapted lines of code, number
of function points added/updated, or more recently, functional density [1,9].
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To address this problem, in a previous work [4] we have adapted the
model introduced in [2], which explores the evaluation of components using a
specification-based testing strategy, and proposes a semantics distance measure
that might be used as the basis for selecting a component from a set of candi-
dates.

By adapting this model, we have set a preliminary suite of measures for
determining the functional suitability of a component-based solution. However,
our measures are based on functional direct connections, i.e. there is no semantic
adaptation between the outputs provided by a concrete component and its
required functionality. The importance of defining functional adaptability
measures comes from the importance of calculating the tailoring effort during
COTS component integration. When analysing components, it is usually the
case that the functionality required by the system does not semantically
match with the functionality provided by the candidate components. Detecting
additional or missed functionality is a more common case instead.

In this paper, we are extending our previous suite of measures to quantify
the components’ functional adaptability, in such a way that our measures may
be combined to or used by some other approaches.

In section 2 of the paper, we introduce the component-based model for mea-
surement (from [2]) along with a motivating example. Then, section 3 presents
a suite of measures for determining the degree in which a component solution
needs adaptation. Section 4 presents two possible applications of our proposal
by combining some related works. Finally, section 5 addresses conclusions and
topics for further research.

2 An Adaptation Model for Measurement

At the core of all definitions of software architecture is the notion that the
architecture of a system describes its gross structure, including things such as
how the system is composed of interacting parts, where are the main pathways
of interaction, and what are the key properties of the parts [13].

Components are plugged into a software architecture that connects partici-
pating components and enforces interaction rules. For instance, the model in [2]
supposes that there is an architectural definition of a system, whose behaviour
has been depicted by scenarios or using an architecture description language
(ADL), which usually provides both a conceptual framework and a concrete
syntax for characterising software architectures.

The system can be extended or instantiated through the use of some
component type. Due several instantiations might occur, an assumption is
made about what characteristics the actual components must possess from the
architecture’s perspective. Thus, the specification of the architecture A (SA)
defines a specification SC for the abstract component type C (i.e. SA ⇒ Sc).
Any component Ki, that is a concrete instance of C, must conform to the
interface and behaviour specified by SC . The process of composing a component
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K with A is an act of interface and semantic mapping. In this work, only the
latter will be addressed.

During the mapping, it can be the case that the semantics of K are not
sufficient for SC (i.e., ¬(SK ⇒ SC). In this situation, K is somehow lacking
with respect to the behavioural semantics of C. The possibility is that K has
partial behavioural compatibility with C. In this case, K either has incompatible
or missing behaviour with respect to some portion of SC . To overcome this, a
semantic adapter ASK

SC
must be specified (and built) such that, when composed

with SK , the adapter yields a component that is compatible with C [2].
The composition of this specification, ASK

SC
, and SK must satisfy the (ASK

SC
◦

SK) ⇒ SC , as shown in Figure 1 (from [2]). The dashed line indicates that the
adapter may provide some of the behavioural semantics if the component K is
somehow deficient.

Architecture A

K

AS
S

C

K

Adapter AS
S

C

K  plugs into architecture A

Component K plugs into Adapter AS
S

C

K

Specification for abstract
component C required  for
“plug-in” to Architecture A

Specification SC

Interface

Behavioral
(Semantics)

Fig. 1. Component K adapted for use in architecture A by adapter ASK
SC

(from [2])

According to the work in [2], a number of issues arise when considering
what behaviour ASK

SC
must have. Firstly, all inputs in the domain of SC that are

not included in the domain of SK must be accounted for by ASK

SC
and likewise

for the outputs in the range of SC , i.e. the domain and range of the aggregate
must at least include that of SC . Given that the domain and range of ASK

SC
◦ SK

is consistent with SC , the adapter ASK

SC
must include those mappings from SC
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that are not supported by SK . Essentially, ASK

SC
must provide those mappings

whose domain is in SC but not SK , and those mappings whose domain in both
SC and SK but where the element mapped to in the range of SC is not the same
as the element mapped to in the range of SK . These mappings are described
formally in [2] as 1:

mapping(ASK
SC

) =
{(i, j) | (i ∈ (dom(SC) \ DSK

SC
) ∧ SC(i) = j) ∨ (i ∈ DSK

SC
∧ SK(i) �= SC(i) ∧ SK(i) = j)}

Secondly, all mappings not included in SC and additionally provided by SK

should be hidden by ASK

SC
to simplify the integration, i.e. ASK

SC
must hide those

mappings whose domain is in SK and not in SC and the element mapped to in
the range of SK is not in the range of SC . These mappings can be described
formally as:

added(ASK
SC

) = {(i, j) | i ∈ (dom(SK) \ DSK
SC

) ∧ SK(i) = j ∧ j /∈ rng(SC)}

Finally, all mappings included in SC and provided by SK constitute the
functionality provided by the component K. These mappings can be described
formally as:

funct(F SK
SC

) = {(i, j) | i ∈ DSK
SC

∧ SK(i) = j ∧ SK(i) = SC(i)}

2.1 A Motivating Example: Credit Card E-payment

Authorisation and Capture are the two main stages in the processing of a card
payment over the Internet. Authorisation is the process of checking the cus-
tomer’s credit card. Capture is when the card is actually debited.

We suppose the existence of some scenarios describing the two main stages,
which represent here a credit card (CCard) payment system. The scenarios will
provide an abstract specification of the input and output domains of SC that
might be composed of:

– Input domain: (AID) Auth IData{#Card, Cardholder Name, Exp Date,
Bank Acc, Amount}; (CH) Cardholder ID;
(CID) Capture IData {Bank Acc, Amount}.

– Output domain: (AOD) Auth OData{ok Auth}; (CHC) Cardholder Credit;
(COD) Capture OData{ok capture, DB update}.

– Getting Authorization: {AID �→ AOD}.
– Calculating Credit: {CH �→ CHC}.
– Capture: {CID �→ COD}.

Suppose we pre-select two components to be evaluated, namely K1 and K2
respectively. However, the specification mapping, shown in Figure 2, reveals some
inconsistencies that should be analysed.
1 Comparison between ranges has been simplified by considering equality. A more

complex treatment of ranges might be similarly specified, for example, by defining
a set of data flows related by set inclusion.
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(i)
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Fig. 2. Functional mappings of SC and SK1/SK2 (from [2])

3 A Measurement Suite for Functional Adaptability

For the measure definitions, we assume a conceptual model with universe of
scenarios S; an abstract specification of a component C; a set of components K
relevant to C, and a mapping component diagram. In the following definitions,
we use the symbol # for the cardinality of a set. To simplify the analysis, we
also assume input/output data as data flows, i.e. data that may aggregate some
elemental data. For the credit card example, input/output data are represented
by {AID, CH, CID}, {AOD, CHC, COD} respectively.

3.1 Implemented Functional Adaptability Measures

Table 1 lists the proposed measures for measuring functional adaptability cases.
The measures have been grouped into two main groups: component-level mea-
sures and solution-level measures. The first group of metrics aims at detecting
incompatibilities on a particular component K, which is a candidate to be anal-
ysed. For example, EF

A
SK
SC

aims at measuring the number of functions that are

added when implementing the adapter of the component K (extended function-
ality).

However, we could need to incorporate more than one component to satisfy
the functionality required by the abstract specification C. In this case, the second
group of metrics evaluates the functional adaptability of all components that
constitute the candidate solution SN . For example, HF

A
SSN
SC

aims at measuring

the number of functions hidden when implementing the adapter/s of the solution
SN .

It is important to note that the amount of functionality implemented by the
adapter depends on a design decision, that is, EF

A
SK
SC

does not represent the
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number of tuples of the mapping ASK

SC
, but the number of tuples (functions)

actually added by the adapter. Similarly, HF
A

SSN
SC

represents the number of

tuples (functions) actually hidden by the adapter. Therefore, we define the
notions of Added Mapping and Hidden Mapping as follows:

AM(ASK
SC

) = {(i, j) | (i, j) ∈ mapping(ASK
SC

) ∧ (ASK
SC

)(i) = j ∧ SC(i) = j}

HM(ASK
SC

) = {(i, j) | (i, j) ∈ added(ASK
SC

) ∧ (ASK
SC

)(i) = {}}

Then, contribution measures are defined to measure the completeness of the
adapters’ functionality. For example, AC

A
SK
SC

aims at measuring the percentage

in which a component adapter contributes to get the extended functionality
required by SC in the scenario S. A more formal definition of the measures is
shown in Table 1.2

Let’s compute the measures for our credit card example, where:

mapping(ASK1
SC

) = {CH �→ CHC; CID �→ COD},

added(ASK1
SC

) = {},

mapping(ASK2
SC

) = {CH �→ CHC; AID �→ AOD}, and

added(ASK2
SC

) = {Taxes �→ Statistics}.

In a first scenario, suppose that all functionality is implemented by the
adapters; i.e.

AM(ASK

SC
) = mapping(AM(ASK

SC
)) and HM(ASK

SC
) = added(AM(ASK

SC
)).

Hence, component-level measures for K1 and K2 are as follows:

EF
A

SK1
SC

= 2;HF
A

SK1
SC

= 0; EF
A

SK2
SC

= 2;HF
A

SK2
SC

= 1

The values of the measures show that selecting the component K1 implies
developing adaptation for adding two functions and no adaptation for hiding
side functionality. On the other hand, selecting the component K2 might lead in
implementing the same number of functions (not necessarily the same amount
of functionality), but it also implies hiding one function (the one represented by
the map (Taxes, Statistics)). So, a balance is struck to decide on selecting a set
of COTS candidates as a solution, selecting only one component, or developing
the solution from scratch.

Let’s suppose that we decide to select a set of COTS components suggesting
the solution SN as the set {K1,K2}. Then, to calculate EF

A
SSN
SC

the override

operation, †AM
A

SKi
SC

1 ≤ i ≤ n, is explicitly expressed as the calculation of

2 † represents traditional map overlapping. Example:{3 �→ true, 5 �→ false} † {5 �→
true} = {3 �→ true, 5 �→ true}.
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{CH �→ CHC; CID �→ COD} † {CH �→ CHC; AID �→ AOD}. It results in
{CH �→ CHC; CID �→ COD; AID �→ AOD}, which implicitly states a selection
when the same functionality might be provided by more than one adapter in the
solution SN . 3

Then, we continue computing the solution-level measures for our example
as follows:

{(†AM(ASKi

SC
))∀Ki∈SN \ (†funct(FSKi

SC
))∀Ki∈SN} =

{CH �→ CHC; CID �→ COD; AID �→ AOD} \ {CID �→ COD; AID �→
AOD} = {CH �→ CHC}

EF
A

SSN
SC

= 1;HF
A

SSN
SC

= 1

In this case, the adapter/s implement all the requirements, i.e. adding the
missed mapping {CH �→ CHC}, and hiding the mapping {Taxes �→ Statistics};
hence AC

A
SSN
SC

is equal to 1 (its highest possible value). But in a more complex

case, we could have decided not to add some missed functionality. Therefore, in
this case the value of AC

A
SSN
SC

would be less than 1, indicating incompleteness

for the adapter/s at the implemented-level. In this case, calculating SC
A

SSN
SC

would be also meaningful.

4 Related Works: Possible Uses of the Measures

Complexity of adaptability. Focusing on adapters, each extended function implies
interaction with target components, which must be identified to determine all
potential mismatches. For example, a component may try to access data that
are considered private by the target component. This mismatch detection can be
performed on every interface connection using the procedure defined by Gacek
[8]. Once the connection type is known, such as call, spawn, or trigger, then all of
the mismatches associated with that connection type are potential mismatches
for the connection. Then, for each mismatch, potential resolution techniques
might be considered from the proposal by Deline [7], where a weighting factor
is assigned to each connection to describe the difficulty with which the solution
can be implemented.

Now, we may associate a resolution complexity factor to each extended func-
tion of our model providing additional information, so that an appropriate choice
can be made. For the E-payment example, there is one function added by the
adapter at the solution-level: Calculating Credit. We suppose that there is a
mismatch associated with this connection and the mismatch resolution tech-
nique is wrapper for this case; hence the relative complexity (RelCplx) will be 6
(from [7]). When more than one mismatch is associated to the same connection,
or when there is more than one connection analysed for the same adapter, we

3 Note that calculating †funct(F
SKi
SC

) also implies a selection when more than one
component is able to provide the same required functionality.
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suggest the Functional Adaptability Complexity (FAC) – related to the adapter
ASSN

SC
– as the sum of all individual connection complexities on the table.

We should note here that the PIC Software Productivity Consortium’s
project [3], has recently determined an estimate for the effort required to in-
tegrate each potential component into the existing system architecture. The
estimate of integration complexity considers several factors and the mismatch
resolution involves semantic as well as syntactic adaptation. Therefore, our work
might be considered as a more specific proposal that could be used along with
other current research efforts on measuring COTS component integration, such
as the BASIS approach.

Measuring architectural adaptability. Adaptability of an architecture can be
traced back to the requirements of the software system for which the architecture
was developed. The POMSAA (Process-Oriented Metrics for Software Architec-
ture Adaptability) framework [6], achieves the need of tracing by adopting the
NFR framework that is a process-oriented qualitative framework for representing
and reasoning about NFRs (non-functional requirements) 4.

In the NFR Framework, the three tasks for adaptation become softgoals to
be achieved by a design for the software system. An adaptable component of a
software system should satisfice these softgoals for adaptation. Another point to
be observed is that design softgoals are decomposed in a manner similar to the
decomposition of the NFR softgoals. One of the softgoals to be decomposed is
adaptability, which can be further described in terms of semantic adaptability,
syntactic adaptability, contextual adaptability and quality adaptation.

Our proposal suggests analysing each branch of the hierarchy of semantic
adaptability of the NFR softgoal graph in terms of complexity and size, as
we have previously defined. In this way, qualitative judgments on architectural
adaptability would be based on more precise and objective values. After that,
the architectural adaptability will characterise system’s stability at the higher
level, conceptualised in terms of its functionalities for system’s users.

5 Conclusions and Future Work

We have presented a preliminary suite of measures for determining the functional
adaptability of a component-based solution. The suite of measures might be
integrated to other approaches – such as BASIS – and the final calculation might
be applied to ponderate architectural decisions when calculating measures for
architectural adaptability – such as the work in [6] suggests.

Of course, there are some points for further research. On one hand, we should
note that our measures are based on counting functional mappings, and their
domains – specified by different levels of abstraction – could distort the final
measure. Then, a more formal specification of input/output values as well as the
relationships between them would reduce ambiguity when calculating the mea-
sures. At this point some related works might be helpful, such as the proposal in
4 For more detailed description of NFRs, we refer the reader to [5]
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[10], which measures a refinement distance by measuring both the requirements
of SC that are left unfulfilled by K as well as the functional features of K that are
irrelevant to SC. On the other hand, functional mappings come from scenarios
that also need further discussion on their generation and documentation.

Finally, our measures and the procedure need further validation. In order
to demonstrate the applicability of our proposal, some empirical studies are
currently carried out on the domain of E-payment systems.

Acknowledgments. This work is partially supported by the CyTED project
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